	(O:	rigir	ıal	Sign	ıatı	ıre	of I	Mer	nbe	r)	

108TH CONGRESS 1ST SESSION

H.R.

To authorize the Secretary of Energy to cooperate in the international magnetic fusion burning plasma experiment, or alternatively to develop a plan for a domestic burning plasma experiment, for the purpose of accelerating the scientific understanding and development of fusion as a long term energy source.

IN THE HOUSE OF REPRESENTATIVES

Ms.	LOFGREN	introduced	the	following	ыш;	which	was	referred	to	the
	Com	$_{ m mittee}$ on $_{ m _}$								

A BILL

To authorize the Secretary of Energy to cooperate in the international magnetic fusion burning plasma experiment, or alternatively to develop a plan for a domestic burning plasma experiment, for the purpose of accelerating the scientific understanding and development of fusion as a long term energy source.

- 1 Be it enacted by the Senate and House of Representa-
- 2 tives of the United States of America in Congress assembled,

1 SECTION 1. SHORT TITLE.

- This Act may be cited as the "Fueling the U.S.A.
- 3 Through Unlimited Reliable Energy (FUTURE) Act of
- 4 2003".

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

5 SEC. 2. FINDINGS.

- 6 Congress finds the following:
- 7 (1) Economic prosperity is closely linked to an 8 affordable and ample energy supply.
 - (2) Environmental quality is closely linked to energy production and use.
 - (3) Population, worldwide economic development, energy consumption, and stress on the environment are all expected to increase substantially in the coming decades.
 - (4) The few energy options with the potential to meet economic and environmental needs for the long-term future should be pursued aggressively now, as part of a balanced national energy plan.
 - (5) Fusion energy is an attractive long-term energy source due to a virtually inexhaustible supply of fuel available to all nations, its potential as a large base-load electric and hydrogen energy source requiring relatively little land mass, and its inherent safety and promise of minimal environmental impact.

1	(6) The National Research Council, the Presi-
2	dent's Committee of Advisors on Science and Tech-
3	nology, and the Secretary of Energy Advisory Board
4	have each reviewed the Fusion Energy Sciences Pro-
5	gram and each strongly supports the fundamental
6	science and creative innovation of the program and
7	has confirmed that progress toward the goal of pro-
8	ducing practical fusion energy has been excellent, al-
9	though much scientific and engineering work re-
10	mains to be done.
11	(7) Each of these reviews and the opinions of
12	other fusion scientists have stressed the need for a
13	magnetic fusion burning plasma experiment to ad-
14	dress key scientific issues and as a necessary step in
15	the development of fusion energy.
16	(8) The United States fusion research commu-
17	nity has developed a strong consensus that the first
18	option for United States involvement in a burning
19	plasma experiment should be through the inter-
20	national project known as "ITER", and, that should
21	the ITER project fail to go forward, then the con-
22	struction of a domestic burning plasma experiment

known as the Fusion Ignition Research Experiment

or "FIRE" should be pursued aggressively.

23

24

1	(9) The United States scientific community has
2	also developed a corresponding consensus that the
3	eventual success of fusion power will require, concur-
4	rent with a burning plasma experiment, strength-
5	ened effort in fundamental fusion science, develop-
6	ment of advanced technology, and innovation and
7	optimization of configurations for an eventual fusion
8	demonstration facility.
9	(10) The Fusion Energy Sciences Program
10	budget is inadequate to support the necessary
11	science and innovation for the present generation of
12	experiments, and cannot accommodate the cost of
13	participation in or construction of a burning plasma
14	experiment
15	SEC. 3. PLAN FOR FUSION EXPERIMENT.
16	(a) In General.—
17	(1) Priority for international burning
18	PLASMA PROJECT.—The Secretary of Energy (in
19	this Act referred to as "the Secretary") is author-
20	ized to undertake full scientific and technological co-
21	operation in the international burning plasma
22	project known as ITER.
23	(2) Alternative project.—If at any time
24	

Secretary determines that construction and oper-

25

ation of the ITER project is unlikely or infeasible,
the Secretary shall send to Congress, as part of the
budget request for the following year, a plan for im-
plementing the domestic burning plasma experiment
known as FIRE, including costs and schedules for
such a plan. The Secretary shall refine such plan in
full consultation with the Fusion Energy Sciences
Advisory Committee and shall also transmit such
plan to the National Research Council for review.
(b) United States Policy With Respect to Fu-
SION ENERGY SCIENCE.—
(1) Declaration of Policy.—It shall be the
policy of the United States to develop the scientific,
engineering, and commercial infrastructure nec-
essary to ensure that the United States is competi-
tive with other nations in providing fusion energy for
its own needs and the needs if other nations, includ-
ing, by demonstrating electric power or hydrogen
production for the United States energy grid uti-
lizing fusion energy at the earliest date possible.
(2) Fusion energy plan.—Within 6 months
of the date of enactment of this act, the Secretary
shall transmit to Congress a plan for carrying out
the policy set forth in paragraph (1), including cost

estimates, proposed budgets, potential international

25

1	partners, and specific programs for implementing
2	such policy.
3	(A) REQUIREMENTS OF PLAN.—Such plan
4	shall also ensure that—
5	(i) existing fusion research facilities
6	are more fully utilized;
7	(ii) fusion science, technology, theory,
8	advanced computation, modeling, and sim-
9	ulation are strengthened;
10	(iii) new magnetic and inertial fusion
11	research facilities are selected based on sci-
12	entific innovation, cost effectiveness, and
13	their potential to advance the goal of prac-
14	tical fusion energy at the earliest date pos-
15	sible;
16	(iv) such facilities that are selected
17	are funded at a cost-effective rate;
18	(v) communication of scientific results
19	and methods between the fusion energy
20	science community and the broader sci-
21	entific and technology communities is im-
22	proved;
23	(vi) inertial confinement fusion facili-
24	ties are utilized to the extent practicable

1	for the purpose of inertial fusion energy re-
2	search and development; and
3	(vii) attractive alternative inertial and
4	magnetic fusion energy approaches are
5	more fully explored.
6	(B) REPORT ON FUSION MATERIALS AND
7	TECHNOLOGY PROJECT.—In addition, the plan
8	required by this section shall also address the
9	status of, and to the degree possible, the costs
10	and schedules for—
11	(i) the design and implementation of
12	international or national facilities for the
13	testing of fusion materials; and
14	(ii) the design and implementation of
15	international or national facilities for the
16	testing and development of key fusion tech-
17	nologies.
18	SEC. 4. DEFINITIONS.
19	As used in this Act, the following definitions apply:
20	(1) The term "ITER" refers to the inter-
21	national fusion research project whose design is
22	complete and whose location and financing is cur-
23	rently being negotiated between Japan, Europe, the
24	Russian Federation, Canada, China, and the United
25	States.

1	(2) The term "FIRE", refers to the Fusion Ig-
2	nition Research Experiment, the fusion research ex-
3	periment for which design work has been supported
4	by the Department of Energy in the as a possible al-
5	ternative burning plasma experiment in the event
6	that the ITER project fails to move forward.
7	SEC. 5. AUTHORIZATION OF APPROPRIATIONS.
8	There are authorized to be appropriated—
9	(1) for participation in the ITER project (or
10	development of the Fire project) under section 3(a)
11	of this Act—
12	(A) \$12,000,000 for fiscal year 2004;
13	(B) \$20,000,000 for fiscal year 2005;
14	(C) \$50,000,000 for fiscal year 2006;
15	(D) \$75,000,000 for fiscal year 2007; and
16	(E) \$115,000,000 for fiscal year 2008; and
17	(2) for the Fusion Energy Sciences Program in
18	addition to the sums under paragraph (1) of this
19	section—
20	(A) \$335,000,000 for fiscal year 2004;
21	(B) \$349,000,000 for fiscal year 2005;
22	(C) \$362,000,000 for fiscal year 2006;
23	(D) \$377,000,000 for fiscal year 2007;
24	and
25	(E) \$393.000.000 for fiscal year 2008.

